In database:
10-7200 cm-1
195-250 nm
Formic acid (HCO2H)
Molecular weight 46.0256 amu
Freezing point 8.3 C
Boiling point 100.7 C
HITRAN number: 32

Infrared cross-sections from PNNL
FTIR infrared cross-sections from 540 to 7200 cm-1
Data available at 25 C and 50 C
Spectra is composite of on the order of 10 different pressures,backfilled with nitrogen to 760 T.
Corrected for water contamination [4.49%] by rescaling and spectral subtraction. Dimer features present at 3400-2500, 1736, 1365, 1221 and 926 cm-1.
Images of PNNL data in cm2/molecule vs. wavenumbers
Images of PNNL data in cm2/molecule vs. microns

Line list from HITRAN 2004
Data from 10 to 1234 cm-1.
Images of HITRAN 2004 data in cm/molecule vs. wavenumbers
Images of HITRAN 2004 data in cm/molecule vs. microns

Line list from HITRAN 2000
Data from 1060 to 1161 cm-1.
Images of HITRAN 2000 data in cm/molecule vs. wavenumbers
Images of HITRAN 2000 data in cm/molecule vs. microns

UV cross-sections
Please see The MPI-Mainz UV/VIS Spectral Atlas
Images of UV data from 195 to 250 nm

Additional References
Resonance Coupling in the Fourth OH-Stretching Overtone Spectrum of Formic Acid; D.L. Howard and H.G. Kjaergaard; J.Chem. Phys. 121:136-140 (2004).
Figures 2 and 3 showing photoacoustic spectra in the ranges of 13200-13350 and 16050-16350 cm-1

New High-Resolution Analysis of the n7 and n9 Fundamental Bands of Trans-Formic Acid by Fourier Transform Infrared and Millimeter-Wave Spectroscopy; A. Perrin et al.; J.Mol.Spec. 216:203-213 (2002).

Spectroscopic Study of the n6=1 and n8 =1 Vibrational States of Formic Acid, HCOOH: New Assignments of Laser Transtions; O.I. Baskakov and J. Demaison; J.Mol.Spec. 211:262-272 (2002).

Overtone Spectroscopy of Formic Acid; M. Freytes, D. Hurtmans, S. Kassi, J. Lievin, J.V. Auwera, A. Campargue, and M. Herman; Chem.Phys. 283:47-61 (2002).
Figures 2 and 8 showing 2500-8500 and 10100-10300 cm-1

Photophysical Studies of Formic Acid in the VUV. Absorption Spectrum in the 6-22 eV Region; S. Leach, M. Schwell, F. Dulieu, J.-L. Chotin, H.-W. Jochims, and H. Baumgartel; Phys.Chem.Chem.Phys. 4:5025-5039 (2002).
Figure 1 showing 6-22 eV (56-206 nm)

Analysis of the High-Resolution Rotational Structure of the Origin and First Torsional Members of the 267-nm Band System of Formic Acid; L.M. Beaty-Travis et al.; J.Mol.Spec. 205:232-238 (2001).
Figure 1 showing 37300-39000 cm-1

Spectroscopic and Ab Initio Investigation of the nOH Overtone Excitation in Trans- Formic Acid; D. Hurtmans, F. Herregodts, M. Herman, J. Lievin, A. Campargue, A. Garnache, and A.A. Kachanov; J.Chem.Phys. 113:1535-1545 (2000).
Figure 3 showing 3480-3650, 6880-7050, and 13210-13340 cm-1

The Absorption Spectrum of Formic-Acid Dimers in the Vacuum Ultraviolet Region; R. Mualem, E. Sominska, V. Kelner, and A. Gedanken; J.Chem.Phys. 97:8813-8814 (1992).
Figure 1 showing 1430-1550 angstroms

Noteshcooh
Fundamental frequencies from NIST Chemistry Webbook
n1 3570 cm-1 (a') OH stretch
n2 2943 cm-1 (a') CH stretch
n3 1770 cm-1 (a') C=O stretch
n4 1387 cm-1 (a') CH bend
n5 1229 cm-1 (a') OH bend
n6 1105 cm-1 (a') C-O stretch
n7 625 cm-1 (a') OCO deform
n8 1033 cm-1 (a) CH bend
n9 638 cm-1 (a) torsion



List of available data for all molecules in database
Return to front page